Assessment and subject description

Óbuda Universi	tsz									
Kandó Kálmán Faculty of Electrical Engineering				eering	Institute of Microelectronics and Technology					
Subject name and code: Engineering Phys						MEMF1ENNM				
,							Credits: 3			
Full-time, Fall S	Semester									
Course: BGK, M.Sc. Mechatronics, full-time,. Semester I., Year of 2017-2018.										
Responsible:	ble: Dr. Ervin Rácz Ph.D.		Ph.D.	Lecturers	D	Dr. Emőke Imre Ph.D. assoc. professor				
•	associate	associate professor					•			
Prerequisites:										
Contact hours	Lecture: 2 Class of		liscussion: -		Lab hours: -	Tutorial: -				
per week:										
Assessment and	midterr	midterm marks								
evaluation:										
	•		Sı	ıbject desc	rip	tion				
Aims:										

- Improving and widening physics skills and axiomatic reorganizing of the physics topics have been studied during B.Sc. Physics classes.
- Systematic study of mathematical methods needed for higher level Physics and special courses will be studied in the future (such as Thermodynamics, Engineering Optics,...)
- Studying some special courses missed from B.Sc. study such as ground of Quantum physics, and introduction of some fields of applications.

Topics to be covered:

<u>Part one (Mechanics):</u> kinetic energy, a Lagrange function, Hamilton's principle., Euler–Lagrange equation, general forces in Physics, Lagrange multiplicators, waves, hydrodynamics. <u>Part two:</u> electrical charge, Field quantities, Stokes theorem, Maxwell's equations in integral and differential forms. <u>Part three:</u> phenomenological theory of thermodynamics, fundamental laws of thermodynamics, statistics, non-linear systems. <u>Part four:</u> optics, electrodynamics. <u>Part five:</u> quantum mechanics, electron structure of solid states, electric conduction effects, crystal-diffraction, Fermi surfaces, system investigations, boundary effects.

Topics	Week	Lessons
Introduction. Background from Mathematics.	1.	2
Real numbers, complex numbers. Vector space (linear field), vectors.	2017.09.11.	
Relations. General description of a function. Real-valued functions: single-		
valued and multivalued functions. (Differential functions). About vector-		
valued functions. Tensors.		
Chapters from theoretical mechanics part 1.	2.	2
Newton's laws of motion. Phase space. About the variation theory. (Euler-	2017.09.18.	
Lagrange equation).		
Test #1.,	3.	2
Chapters from theoretical mechanics part 2.	2017.09.25	
General coordinates. Energies in mechanics. Lagrange function. Hamilton's		
principle.		
Tensors. Tensors in mechanics.	4.	2
Tensor. Inertia tensor. Dilatation tensor. Stress tensor.	2017.10.02.	
Basics of Thermodynamics.	5.	2
Ideal Gases	2017.10.09.	
Status number. Energy. Work. General force. (0. 1., 2. 3.)		

Thermodynamics. Main laws of thermodynamics. (0. 1., 2. 3.)	6. 2017.10.16.	2
Break	7. 2017.10.23.	2
Test #2., Quantum mechanics part cont. Blackbody radiations. Compton effect. Specific heat of solids. Uncertainty principle from Heisenberg-Schrödinger equation. Several applications of Schrödinger equation: particle in a one-dimensional box, particle in potential valley, linear harmonic oscillator. Hilbert space. Electron spin. Many body problem in quantum mechanics. Adiabatic approximation.	8. 2017.10.30.	2
Solid state physics. Ideal crystals (unit cell, Bravais lattice, base vectors, reciprocal lattice, Miller index), real crystals (Chrystal defects). Drude model. Sommerfeld model. Band theory of solids. Hall effect. Nucleation.	9. 2017.11.06.	2
Electrodynamics Basics. Field quantities. Maxwell's equations in integral and differential forms. Continuity equation. Frames of reference in the classical mechanics and electrodynamics. (Einstein-postulates – Postulates of special relativity, Lorentz transformation). Minkowski space.	10. 2017.11.13.	2
Elements of statistical mechanics. Basic concepts and theorems of the statistical mechanics. Phase space. Distributions. (Micro canonical, canonical, grand canonical thermodynamic systems).	11. 2017.11.20.	2.
Break	12. 2017.11.27.	2
Test #3., Principles of material and structure investigations. Basics of spectroscopy, and microscopy. Structure monitoring systems (monitoring with x-rays and particle sources). Some kinds of microscopies.	13. 2017.12.04.	2
Presentations. Discussions. Evaluation. Assessment and evaluation	14. 2017.12.11.	2

Assessment and evaluation
Requirements of the signature: less than 30% missed classes, write the tests, prepare the essay/presentation.
Evaluation: Average of the grades of the tests and essay.

Suggested:

- Ilja N. Bronstein, Konstantin A. Semendjajew: Handbook of Mathematics, Springer, ISBN 978-3871446443
- 2. Herbert B. Callen: Thermodynamics and Introuction to Thermostatistics, 2nd Edition, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1985, ISBN 0-471-86256-8 (in library)
- 3. Dilip Kondepudi, Ilya Prigogine: Modern Thermodynamics From Heat Engines to Dissipative Structures, John Wiley & Sons, Chichester, England, 1998, ISBN 0471 97394 7 (paperback)
- 4. Karoly Simonyi: Theoretische Electrotechnik, Johann Abrosius Bart, ISBN 978-3335003755
- 5. Charles Kittel: Introduction to Solid State Physics, John Wiley & Sons, Inc., ISBN 0-471-41526-X
- 6. David J. Griffits: Introduction to Quantum Mechanics
- 7. Claude Cohen–Tannoudji, Bernard Diu, Franck Laloe: Quantum Mechanics, Wiley-VCH, ISBN: 978-0-471-56952-7