Óbuda University Donát Bánki Faculty of Mechanical and Safety Engineering	Institute of Mechatronics and Vehicle Engineering Department of Mechatronics	
Subject name and Neptun-code: Selected Chapters Fall Semester of the Academic year of 2016/17. Full i		
Course available at: MSc in Mechatronics	ime training.	
Supervised by: Prof. Dr. Róbert SZABOLCSI	Lectured by: Prof. Dr. Róbert SZABOLCSI	
Requirements of the course: There are no statistical (Neptun Codes)		
Lessons per week: Theory: 2 Practice (in Au	iditorium): – Computer Lab: 2 Consultation: 0	
Requirement: Exam (E)		
The Syllabus		
<i>Aim:</i> to give an overview about basics of electricity, and its selected chapters dealing with electrical systems analysis and their computer simulation.		
Kirchhoff's Current Law (KCL). Kirchhoff's Voltage conductances. Current division. Voltage division. Analysis of electrical circuits using mesh current n	ectrical systems. Basic laws of electricity. Ohm's Law e Law (KVL). Finding resulting resistances. Finding resulting Analysis of electrical circuits using node voltage method nethod. Phase compensation in electrical circuits. Basics of chines. AC and DC servo measurements. Computer aidec	
Schedule a	and Requirements	
Weeks		
1. Registration. Administration a	Registration. Administration activities.	
	Introduction to the subject. Syllabus overview. Requirement of the course. Electrical circuits. Passive and active elements. Electrical devices. Electrical systems.	
3. Basic laws of electricity. Ohm Voltage Law (KVL).	Basic laws of electricity. Ohm's Law. Kirchhoff's Current Law (KCL). Kirchhoff's Voltage Law (KVL).	
4. Transients in electrical circuits	Transients in electrical circuits.	
	Finding resulting resistances. Finding resulting conductances. Current division. Voltage division. Analysis of electrical circuits using node voltage method.	
6. Analysis of electrical circuits u	Analysis of electrical circuits using mesh current method.	
7. Test Paper $N^0 1$.	Test Paper N ⁰ 1.	
	al circuits. Lag-compensation based on passive electrical ed on passive electrical filters. Bandwidth-filtering.	
9. Transfer functions of the passi	ve filters. Bode-diagrams. Nyquist-diagrams.	
	Conventional DC machine, construction, classification, acteristics. Motor characteristics.	
11.Induction machines. Equivaler motors. Two-phase induction n	at circuits. Speed control of induction machines. Small AC notors.	
12. Measurement of DC machines	Measurement of DC machines.	
	Measurement of AC machines.	
14. Test Paper $N^0 2$.	Test Paper N ⁰ 2.	
15. Closing the course. Improvement	ents. Gaining signature.	
and only if all the 2 test papers are marked with g	pers. The course is to be considered successfully executed if rades higher than 2 (satisfactory). If there is any test paper those all 2 written ones, the teacher's signature is denied. If must be cancelled from the course.	
<i>To improve:</i> If there is any test paper evaluated as ' U to improve. The 15 th lecture is also among those of av	<i>Insatisfactory</i> ', there are two occasions provided for students ailable for improving.	
Participation: The participation is not obligatory at al	l lectures with the exception of the test paper lectures.	

Exam (*E*): written and oral.

References

- 1. Paul, C.R. Nasar, S.A. Unnewehr, L.E. Introduction to Electrical Engineering, McGraw-Hill, Inc., Int. Eds., 1992.
- 2. Morris, N.M. Electrical Circuit Analysis and Design, The MacMillan Press Ltd., 1993.
- 3. Edwards, J.D. Electrical Machines, The MacMillan Press Ltd., 1986.
- 4. Bolton, W. Electrical and Electronic Measurement and Testing, Longman Scientific & Technical, 1992.
- 5. Dorf, R.C. Bishop, R.H. Modern Control Systems, Prentice-Hall International Inc., 12th Ed., 2011.
- 6. Lecture notes of the students.

Quality Assurance: using feedback provided by the students for improving content and methods of teaching of the subject.

6 September 2016, Budapest, Hungary

Prof. Dr. Róbert SZABOLCSI, Col(Res) Course Leader