

Manufacturing Engineering 2 BAGGT23NEC

2013/14 I.

Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu.hu

Dr. Mikó Balázs <u>miko.balazs@bgk.uni-obuda.hu</u> Room 126

Szalóki István szaloki.istvan@bgk.uni-obuda.hu Room 137

Dr Zentay Péter <u>zentay.peter@bgk.uni-obuda.hu</u> Room 127

- Week I-6th Cutting tools and methods
- Week 7-13th Machine tools
- Week I4th Test

- HomeWork I Tool drawing
- HomeWork 2 Operation planning
- HomeWork 3 -

- http://www.sandvik.coromant.com/engb/knowledge/pages/default.aspx
- http://www.kennametal.com/kennametal/en/reso
 urces/calculators.html
- http://mmu.ic.polyu.edu.hk/handout/0102/0102.
 htm
- http://www.mitsubishicarbide.net/contents/mht/ enuk/html/product/technical_information/index. html
- www.turning.fw.hu

01

BASICS OF CUTTING

Manufacturing methods

Cutting Forming Assembly methods Sheet metal Welding **Packaging** processing Heat Testing and Moulding Measuring treatment Forging Painting

Manufacturing process

Fig. 1.2 (a) Typical accuracy and finish and (b) complexity and size achievable by machining, forming and casting processes, after Ashby (1992)

Manufacturing engineering II - miko.balazs@bgk.uni-obuda.hu

- Good for piece production (cost, time)
- Accurate, guud surface quality
- Good for every material
- Good for complex parts
- Homogenous material structure
- Easy to automate

- High energy demand
- Waste material (chip)
- Different machine tools
- Lot of equipments
- CNC control
- Risk of accident
- Polution (coolant liquid, chip, noise...)
- High cost

Workpiece

- Size
- Accuracy
- Surface roughness
- Material
- ...

Process performances

- Chip formation
- Temperature
- Wear
- Forces

Economy

- Productivity
- Cost
- Optimization

CUTTING PROCESS

- Cutting speed
- Feed
- Depth of cut
- Cooling condition

Cutting tool

- Edge geometry
- Material
- Coating
- Buld-up

Machine tool

- Accuracy
- Power
- Control

Manufacturing engineering II - miko.balazs@bgk.uni-obuda.hu

Cutting parameters (in case of turning)

n – Spindle speed [I/min]v_c – Cutting speed [m/min]

$$n = \frac{1000 \cdot v_c}{D \cdot \Pi} \qquad v_c = \frac{D \cdot \Pi \cdot n}{1000}$$

f – Feed [mm] v_f – Feed speed [mm/min]

$$v_f = n \cdot f$$

 a_p – Depth of cut [mm]

Material removal rate:

$$Q = a_p \cdot f \cdot v_c [mm^3 / \min]$$

Primary motion

Ensures the cutting speed

Linear OR Rotational

Continous OR Periodical

Done by the Tool OR by the Workpiece

Feed motion

Ensures the feed speed

Continous OR Periodical (double stroke)

Done by the Tool OR by the Workpiece

Cutting

- Hard tool Tool materials
- Cutting edge Edge geometry
- Relative motion Cutting methods

Chip thickness after cutting (t_2) Undeformed chip thickness Shear angle (ø) Tool Rake

Deformation zones

- Primary zone:
 - Shear of the material
 - Shearing force
- Secondary zone
 - Friction between the chip and the tool
- Tertiary zone
 - Friction between the tool and the part
 - Plastic deformation

- I. Elastic deformation
- 2. Plastic deformation
- 3. Shearing
- 4. Welding of chip elements

SP – Shear plane

 Φ – Shear plane angle

 γ – Rake angle

hI – Undeformed chip thickness

h2 – Deformed chip thickness

Chip contraction:

$$\lambda = \frac{h_2}{h_1}$$
 Steels: I.5 – 6
Cast iron: I.5 – 2.5

$$h_1 \cdot v_c = h_2 \cdot v_{ch}$$

Chipformation

- Continous chip
- Discontinous segmented chip
 - ° C
- Breaked chip
 - C
 - 6
 - Short spiral

Chipformation

- (1) continuous, long chipping, such as most steels
- (2) lamellar chipping, such as most stainless steels
- (3) short chipping, such as most castirons
- (4) varying, high force chipping, such as most super alloys
- (5) soft, low force chipping, such as aluminium
- (6) high pressure/temperature chipping, such as hard materials
- (7) segmental chipping, such as titanium

Turning test

a_p [mm]

Feed = 0.1mm/rev and depth of cut=1.25mm

Chip breaking

Three ways to break a chip

A – Self breaking

Cutting conditions (v_c , f, a, coolant)

Tool geometry

Workpiece material (S, Pb)

B – Stopped by the tool

C – Stopped by the workpiece

- Cutting method: turning tool, drilling tool, milling cutter...
- Edge geometry: regular or unregular (statistical)
- Number of edges: 1, 2, many, much
- Edge shape: simple or shaped
- Build-up: solid (monolite), assembled (brazed, fixed by screw...)
- Edge material: steels, hard materials, super hard materials

Example

- Turning tool
- Regular edge geometry
- Number of edges: I
- Simple edge
- Assembled built-up
- Hard material (sintered carbide)

Example

- Milling cutter
- Regular edge geometry
- Number of edges: 10
- Shaped edge
- Solid built-up
- Steel material (HSS)

Example

- Grinding tool
- Unregular edge geometry
- Number of edges: infinity
- Simple edge
- Solid built-up
- Composite

Parts of a cutting tool

Tool shank

Cutting edge(s)

Tool length Strength

Positioning Fixing

Parts of a cutting tool

Edge zone

Parts of a cutting tool

Edge zone

Edge geometry

Edge geometry

Edge geometry

 κ_r – Cutting edge angle

 $\varepsilon_{\rm r}$ – Nose angle

 κ'_r – Minor cutting edge angle

 α_{o} – Flank angle

 β_o – Wedge angle

 γ_0 – Rake angle

Perpendicular to the edge

$$\alpha_o + \beta_o + \gamma_o = 90$$

 $\gamma_{\rm o} < 0$

$$\kappa_{\rm r} + \varepsilon_{\rm r} + \kappa'_{\rm r} = 180$$

 β_{o}

Definitions

Shank – It is main body of tool. The shank used to gripped in tool holder.

Flank – The surface or surface below the adjacent of the cutting edge is called flank of the tool.

Face – It is top surface of the tool along which the chips slides.

Base – It is actually a bearing surface of the tool when it is held in tool holder or clamped directly in a tool post.

Heel – It is the intersection of the flank and base of the tool. It is curved portion at the bottom of the tool.

Nose – It is the point where side cutting edge & base cutting edge intersect.

Cutting edge – It is the edge on face of the tool which removes the material from workpiece. The cutting edges are side cutting edge (major cutting edge) & end cutting edge (minor cutting edge)

Tool angles - Tool angles have great importance. The tool with proper angle, reduce breaking of tool, cut metal more efficiently, generate less heat.

Noise radius – It provide long life and good surface finish sharp point on nose is highly stressed, and leaves grooves in the path of cut. Longer nose radius produce chatter.

Tool materials

- Hardness
- Wear resistance
- Strength
- Toughness
- Heat resistance

Steel materials

- Unalloyed tool steels
 - Fe + C; Hardening 66-67 HRc
- Alloyed tool steel
 - Mn (manganese), 60-62 HRc
 - W (tungsten), 62-64 HRc
 - Cr (chromium); 62-64 HRc
 - High speed steel (HSS) (W, Cr, V, Mo, Co); 63 70 HRc

Hard materials

- Cemented tungsten carbide
 - Powder production Forming Sintering (heat treatment) - Coating
 - Composite material: Co + WC, TiC
 - 87-92 HRA

Coated cemented carbide

Uncoated carbide

Hard materials

- Ceramic
 - \circ Al₂O₃ / Al₂O₃+TiC / Si₃N₄
 - 90-96 HRA
 - Rigid but high heat resistance (1400°C)

Pure-ceramic

Mixed ceramic

- CerMet Ceramic metal
 - Mo, Ni + TiC, TiN, TiCN

Cermet

Super hard material

- Diamond
 - Not for steels!!!

Polycrystalline diamond

- CBN Cubic boron nitride
 - For hardened steel (65 HRc)

Coating technology

- Aim:
 - Increase the wear and heat resistance
 - Decrease the friction coefficient and heat
- Technologies:
 - CVD
 - PVD
- Thichness: 2-12 μm

CVD - Chemical vapour deposition

- Multi-layer coating
- Chemical reaction of gases

Chemical vapour deposition

Multi layer coating

PVD – Phisical vapour deposition

- Environment frendly
- Not so expensive
- Flexible

Physical vapour deposition

History

BN Cutting speeds, wear resistance, thermal resistance Al₂O₃. ceramic coated Cermet Si₃N₄-Al₂O₃ + TiC Coated Cermet fine and ceramic cemented ultra fine grain carbide cemented cemented carbide based carbide on tungsten carbide coated HSS HSS

Toughness, bending strength, feed

Summary

Increasing productivity

Production of components per cutting edge changed considerably, with that of HSS to cemented carbide

Increasing cutting parameters

